# Graduate Courses

MSCS 500-Level Graduate Courses

Below is a list of courses we expect to be offering in the semesters ahead.

## Spring 2023 Planned Graduate Courses Heading link

Math 504: Set Theory | Naive and axiomatic set theory. Independence of the continuum hypothesis and the axiom of choice. Course Information: Same as PHIL 565. Prerequisite(s): MATH 430 or MATH 502 or PHIL 562. | TBD | ||
---|---|---|---|---|

Math 506: Model Theory I | Elementary embeddings, quantifier elimination, types, saturated and prime models, indiscernibles, Morley's Categoricity Theorem. Course Information: Same as PHIL 567. Prerequisite(s): MATH 502 or PHIL 562. | TBD | ||

Math 507: Model Theory II | Stability theory: forking and indpendence, stable groups, geometric stability. Course Information: Same as PHIL 568. Prerequisite(s): MATH 506 or PHIL 567. | TBD | ||

Math 511: Descriptive Set Theory | Polish spaces and Baire category; Borel, analytic and coanalytic sets; infinite games and determinacy; coanalytic ranks and scales; dichotomy theorems. Course Information: Recommended background: MATH 445 or MATH 504 or MATH 533 or MATH 539. | TBD | ||

Math 512: Advanced Topics in Logic | Advanced topics in modern logic; e.g. large cardinals, infinitary logic, model theory of fields, o-minimality, Borel equivalence relations. Course Information: Same as PHIL 569. May be repeated. Students may register in more than one section per term. Prerequisite(s): Approval of the department. | Filippo Calderoni | ||

Math 515: Number Theory II | Introduction to classical, algebraic, and analytic number theory. Algebraic number fields, units, ideals, and P-adic theory. Riemann Zeta-function, Dirichlet's theorem, prime number theorem. Course Information: Prerequisite(s): MATH 514. | Nathan Jones | ||

Math 517: Second Course in Abstract Algebra II | Rings and algebras, polynomials in several variables, power series rings, tensor products, field extensions, Galois theory, Wedderburn theorems. Course Information: Prerequisite(s): MATH 516. | Lawrence Ein | ||

Math 525: Advanced Topics in Number Theory | Introduction to topics at the forefront of research in number theory. Topics will vary and may include elliptic curves, automorphic forms, diophantine geometry or sieve methods. Course Information: May be repeated. Prerequisite(s): MATH 515; or consent of the instructor. | Alina Cojocaru | ||

Math 535: Complex Analysis I | Analytic functions as mappings. Cauchy theory. Power Series. Partial fractions. Infinite products. Course Information: Prerequisite(s): MATH 411. | Jerry Bona | ||

Math 547: Algebraic Topology I | The fundamental group and its applications, covering spaces, classification of compact surfaces, introduction to homology, development of singular homology theory, applications of homology. Course Information: Prerequisite(s): MATH 330 and MATH 445. | Daniel Groves | ||

Math 550: Differentiable Manifolds II | Vector bundles and classifying spaces, lie groups and lie algbras, tensors, Hodge theory, Poincare duality. Topics from elliptic operators, Morse theory, cobordism theory, deRahm theory, characteristic classes. Course Information: Prerequisite(s): MATH 549. | Kevin Whyte | ||

Math 553: Algebraic Geometry II | Divisors and linear systems, differentials, Riemann-Roch theorem for curves, elliptic curves, geometry of curves and surfaces. Course Information: Prerequisite(s): MATH 552. | Kevin Tucker | ||

Math 555: Complex Manifolds II | Dolbeault Cohomology, Serre duality, Hodge theory, Kadaira vanishing and embedding theorem, Lefschitz theorem, Complex Tori, Kahler manifolds. Course Information: Prerequisite(s): MATH 517 and MATH 535. | Julius Ross | ||

Math 569: Advanced Topics in Geometric and Differential Topology | Topics from areas such as index theory, Lefschetz theory, cyclic theory, KK theory, non-commutative geometry, 3-manifold topology, hyperbolic manifolds, geometric group theory, and knot theory. Course Information: Prerequisite(s): Approval of the department. | Alexander Furman | ||

Math 571: Advanced Topics in Algebraic Geometry | Various topics such as algebraic curves, surfaces, higher dimensional geometry, singularities theory, moduli problems, vector bundles, intersection theory, arithematical algebraic geometry, and topologies of algebraic varieties. Course Information: May be repeated. Students may register in more than one section per term. Prerequisite(s): Approval of the department. | Izzet Coskun | ||

Math 576: Classical Methods of Partial Differential Equations | First and second order equations, method of characteristics, weak solutions, distributions, wave, Laplace, Poisson, heat equations, energy methods, regularity problems, Green functions, maximum principles, Sobolev spaces, imbedding theorems. Course Information: Prerequisite(s): MATH 410 and MATH 481 and MATH 533; or consent of instructor. | Alexey Cheskidov | ||

Math 582: Linear and Nonlinear Waves | Analysis of partial differential equations describing (non-) linear wave phenomena. In particular, dispersive and hyperbolic equations. Analytical techniques include Fourier transformation and fixed point theorems. Course Information: Prerequisite(s): Graduate standing and MATH 533 and MATH 576 OR MATH 539 or consent of the instructor. | TBD | ||

MCS 501: Computer Algorithms II | Continuation of MCS 401 (same as CS 401). Advanced topics in algorithms. Lower bounds. Union-find problems. Fast Fourier transform. Complexity of arithmetic, polynomial, and matrix calculations. Approximation algorithms. Parallel algorithms. Course Information: Same as CS 501. Prerequisite(s): MCS 401 or CS 401. | Gyorgy Turan | ||

MCS 541: Computational Complexity | Time and space complexity of computations, classification of mathproblems according to their computational complexity, P not equal NP problem. Course Information: Prerequisite(s): Consent of the instructor. | Lev Reyzin | ||

MCS 548: Mathematical Theory of Artificial Intelligence | Valiant's learning model, positive and negative results in learnability, automation inference, perceptrons, Rosenblatt's theorem, convergence theorem, threshold circuits, inductive inference of programs, grammars and automata. Course Information: Prerequisite(s): MCS 541. | Gyorgy Turan | ||

MCS 571: Numerical Analysis of Partial Differential Equations | Numerical analysis of Finite Difference methods for PDE of mathematical physics: Wave, heat, and Laplace equations. Introduction to numerical analysis of the Finite Element method. Course Information: Prerequisite(s): MATH 481 and MCS 471 or consent of the instructor. | David Nicholls | ||

MCS 572: Introduction to Supercomputing | Introduction to supercomputing on vector and parallel processors; architectural comparisons, parallel algorithms, vectorization techniques, parallelization techniques, actual implementation on real machines. Course Information: Prerequisite(s): MCS 471 or MCS 571 or consent of the instructor. | Jan Verschelde | ||

MCS 584: Enumerative Combinatorics | Enumerative methods in combinatorics, including inclusion/exclusion, recursion, partitions, Latin squares and other combinatorial structures. Prerequisite(s): MCS 421 and MCS 423, or consent of the instructor. | Marcus Michelen | ||

Stat 511: Advanced Statistical Theory I | Statistical models, criteria of optimum estimation, large sample theory, optimum tests and confidence intervals, best unbiased tests in exponential families, invariance principle, likelihood ratio tests. Course Information: Prerequisite(s): STAT 411. | Kyunghee Han | ||

Stat 522: Multivariate Statistical Analysis | Multivariate normal distribution, estimation of mean vector and covariance matrix, T-square statistic, discriminant analysis, general linear hypothesis, principal components, canonical correlations, factor analysis. Course Information: Prerequisite(s): STAT 521. | Jie Yang | ||

Stat 536: Optimal Design Theory II | Construction of optimal designs: BIB , Latin square and generalized Youden , repeated measurements , treatment-control studies; construction of factorial designs including orthogonal arrays Course Information: Prerequisite(s): STAT 535 or consent of the instructor. | Min Yang |